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ABSTRACT 

The similarity laws required for experimental 
aerothermoelastic studies at Moo< 3.5 are reviewed. 

An experimental program to check out some of the con- 

cepts and ideas involved in these studies is proposed 

with particular emphasis on flutter of thin, solid, 

plate-type lifting surfaces, built-up w.ng structures, 
and panel flutter. 
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Object    . . . *; . 

;. . .    A theoretical study of the similarity laws for 

aerothermoelastic testing has been made by the Aeroelastic 

and Structures Research Laboratory at MIT.  The-results are 

contained in References 1,2. and particularly 3.  It would 

be of interest now to carry out an experimental test program 

to check out some of the concepts and ideas involved in these 

similarity studies.  The present note describes such a pos- 

sible test program, that might be undertaken.  For simplicity 

this program will be limited to  M  < 3.5. ■ oo        ■ ■ 

Introduction 

As was pointed out in the'above mentioned references, 

similitude for the general aerothermoelastic model is gener- 

ally not.possible for scale ratios other than unity.  The 

primary conflict occurs between the free stream Mach number 

M  ,. the Reynolds number Re  , the basic aeroelastic para- 

meter  P_V /E„ , the heat conduction parameter  k /K oo '    o _   r oo'o 
and the thermal expansion parameter  a T  .  Howevfer, certain o o 
relaxations of this basic conflict are possible when con- 
sidering specialized situations, such as the behavior of wing 

structures, thin plate-like lifting surface structures, and 

panel flutter.  Under these conditions the similarity para- 

meters assume less restrictive forms, even permitting geo- 

metrical distortions in-some cases. 

In the event that similarity is not achievable 

under these specialized situations, recourse may be made to 

"incomplete aerothermoelastic testing" in which the pressure 

and/or thermal loadings are estimated in advance and applied 

artificially to the model.  This is in contrast to the pre- 

vious complete aerothermoelastic testing where the high 



■ • 

^ stagnation-.teihperature'air stream "pVovides both the appropriate 
* aerodyrfa^ic pressure loads and heating rates t.o the model-. 

,. Finally, if not much coupling is evident between 

the aerodynamic pressure, aerodynamic heating, heat conduction, 

and stress and deflection phenomena, one can construct "re- 

stricted purpose" models investigating separately one or 

another of the above facets of the complete aerothermoelastic 
problem. '•**.'■ 

■ ■ •        * .• '■     .   • 

•. •  ■  ,   •       • .   _       .• •■ 

Since both "restricted purpose" models and "incom- 

plete aerothermoelastic testing" have been widely used and 

studied, in the past, the present test program will attempt to 

deal with the more novel specialized situations of the com- 
• plete aerothermoelastic problem, 
"•.'".■ • ' .  • • 

In proposing such an aerothermoelastic test program, 

it is desirable to select situations where aerothermoelastic 
coupling effects are pronounced.  The following situations 
have accordingly been selected: 

1) Flutter of heated solid section wings 

2) Flutter of heated built-up wings 

3) Flutter of heated panels 

In addition to checking out the aerothermoelastic similarity 

relations, the present program can also serve to investigate 

the aerothermoelastic phenomena involved, and the theory devel- 
oped to predict it. 

Review of the Similarity Parameters        . "• • 

a)   General Aerothermoelastic Body 

The similarity parameters for a general aerothermo- 
elastic model at Moo< 3.5  are essentially (Ref. 1, Eq. 2.35 
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The first .five parameters above are the primary ones 

•to be reconciled.  The  P^ /.P    condition is required only, 
- .       •   ■ D '    OO ^ J       ■ 

in dynamic aerothermoelastic problems such as flutter, and' 

often'-there it may be neglected at sufficiently large values 

of  PB / P   .  The next five parameters serve to define the 

reference values of T  ,, t  , u  , and a  to be used in the 
nondiniensionallzations *.   The  pF /Eo  condition defines 

any additional non-aerodynamic loads present.  The  e a T L/K0 
0 •   « 

and  P PL/P  V   conditions enter only when surface radiation 

effects and gravity effects are significant, while the next 

three conditions can usually be satisfied by many gases,and 

materials.  The remaining double-barred quantities are all 

functions of temperature and require that they have the same 

variation for model and prototype.  The  T^./T  calls for 
• D J.   O 

similarity of body initial temperature states. 

If the above parameters are satisfied, then the 

nondiraensional quantities  P/P^v ,   T/T0   t/to, u/uo and a/dQ 

The presence of the two reference times  t  need not be 

bothersome if thermal times are considerably different from 

aerodynamic times. 



wil1 be the same for model and prototype, and behavior o*f 

the model may infer, behavior of the prototype.  References 1 

and 3 give a discussion pf the V§e of different materials and 
gases to satisfy the above requirements.  •   • 

Similitude under the conditions of Eq. (1) is.gener- 

ally not possible for scale.ratios other "than unity.. The *..  '* 

following specialized aerothermoelastic problems.were there- 

fore :also studied in which it is shown that several of the 

parameters of the general problem" above appear in less, re- 
strictive combined forms.-• .      "  -. " . ■ . , 

b) .  Wing Structures     •• .**..' 

Vor  the specialized situation of wing structures, 
the similarity parameters of Eq. (1) reduce.essentially to 
(Ref. 1, Eq.A.8 and Ref. .3' Eq. 58) 

Ll L L Eo     >    Eo    >     1^——-—-^-'      (2) 

?*fL     ,   r, ^> %>   *r > P>   *>  C;  £>   *> £ ■ 

The parameters above are less restrictive than the 

general case since  ^ (R<|)'S(Pr)1/3 / Ko  above is. a combina- 

tion of the  Re^ , k^/^  and  Pr  conditions of Eq. (1). 

This parameter results from the application of Frandtl's 

•boundary layer concept to the flow close to the body region. 

Turbulent  flow, is assumed above (if laminar  then the second *' 

parameter is replaced here and throughout by k •* (Re) •5 (Pr) 1//3/K ). *' 

The parameter  (To - TBi)/(TAw- TB1)  now serves to^define      '   * 



the reference temperature To *  The non-dimensional.tempera- 

.ture 0  is nowdefined as  (T - TBi')/(T0 -*TBi^ rather than 

the T/To. of the general case^a)^ therefore eliminating pro- 

. blems in maintaining cumber.some uniform initial temperature 
conditions on the models." 

•   *     *  . •       •  •       • 
• r     • • « 

_ _ :.. ^ -A further simplification can be rtiade at early time?, 

■ when only the. skin/heats up and not much heat has been ton-' 

ducted to the webs.- Under these conditions and with the- ."" ■ 
.assumption that heat' flow' in the. plane of the thin skin is • .' 

■negligibler;. the second-and seventh parameters above Combine 
into, the l6ss stringent parameter.. - • 

•       •       •     •     • 

•- •    •.    .     y'B Co L 

.. •     Under these conditions it Is seen that the Reynolds 

number Re   merely serves to redefine the reference time  t 00 .0 
This eliminates the primary obstacle in the scaling laws and 

any scale length may now be accommodated. 

c)   Thin, Solid, Plate-Type Lifting Surfaces 

The parameters of Eq. (1) are further.reduced to 

the following less restrictive forms when considering äffinely 

related thin, solid, plate-type lifting surfaces (Ref. 2, - 

.Eq. 5.11, 2.34, 3.12,. etc., and Ref. 3, Eq. 63) 

Jv]~-7r)    £*>fa*fcp.y    9*>VX    o<p(To-rei)       ?B   . 

.TS"- Tat    /tyj» • V^5   Hi. 
Ttv-Tgt L1-      '     L      '    LT 

(4) 



wlTere .T  i's the thickness ratio.  Th^se parameters are 

applicable for lapge deflection's and it is'assumed that .the 

,heat flow into tt he thin, plate-like surface cause> « very small 
temperature variation, through the thickness,. 

The parameters abpve are less restrictive than 
Eq. (1) because of their combined forms* involving \   .      If 

stflall deflections are assumed and if additionaily piston.  *. ' 

.theory can be assumed for the aerodynamic loading, the" .refer- 

ence parameter u^ /LT does not appear söparately in Eq. (4) 
ahd ■ u.  becomes a free quantity. 

The scaling requirements are.further simplified 

if it can be assumed that heat, flow in the plane of the plate- 

like surface is negligible.  In this case the following para-, 

meter replacing the second and seventh conditions .of Eq. (4) 
results  * ' « 

.S      //? 

^fej. (ja i 
■ %- CDrLz- 

(5) 

where again it is seen that 

the. reference time  t '. 
" • . o   . • 

d)   Panel Flutter 

Reoo  w111 serve only to redefine. 

The parameters qf Eq. (1) reduce essentially,to the 
following for the flutter of thin heated panels undergoing 

larfee deflections (Ref. 1,   Eq. 4.30, Ref. 2,   Eq. 4.19,* and Ref, 
Eq. "70)      • "  • 

3, 

f^v-2- 
£*r'M>~i 

■ l    'U 

'CO 
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where T  is the thickness ratio of the panel.  The absence 

of y^QQ-l T   is to be noted since now there .are no aero- 

dynamic, thickness effects.  For small deflections, the de- 

flection parameter uo / LT will not appear separately above 
in" Eq. (6).- . , ' .  . 

As in the case of the thin solid liftlpg surface 

of section  c , the second and sixth pararfteters above combine 
into- the'single parameter of Eq. (5) if heat conduction in. 

■ the plane of the panel is negligible. 

EXPERIMENTAL TEST PROGRAM • 

a)   Flutter _of Thin, Solid-, Platef-Type Lifting Surfaces 

It is proposed to test three similar wings of 

different scale.in a large, high stagnation temperature wind 

tunnel at  M  = 3 .  Their aerothermoelastic behavior, prin- 

cipally flutter, is to be correlated according to the special- 

ized parameters of section  c  above.       ' 

The wings are to be rectangular in planform, of 

solid double wedge cross section with «T = .03,9 AC = 3 and 

maximum thickness at seventy percent chord.  The tunnel stag- 

nation temperature should be approximately 500OF  and the 

wings constructed of stainless steel* 17-7 PH for strength and 

minimum change In material properties with temperature.  This 

latter consideration would provide a better indication of the 

direct effect of thermal* stresses in reducing the torsional 



stiffness of the wing.  For such wings, the dynamic pressure, 

PQOV /2 , at flutter is approximately 3800 lbs/ft2 and the 

maximum reduction in GJ is approximately 70% according to the 

theory of Budiansky and Mayers (Ref. 4).  In order, to minimize 

the starting Iqads on the wing, it may be provided either with 

a flexible root, injected into*the test section after flow 

has been established or provided with a protective cover shell 

which will take the starting loads and then become disengaged 

after the flow has been established.  This'latter method*has 

been used by the NASA in their 6' x 9' , M  = 3 , thermal 
tunnel. 

Models of different scale are suggested so that 

the influence of the Reynolds number appearing in the second 

parameter of Eq. (4) may be ascertained.  It is also of par- 

ticular interest to see if correlation is possible with the 

parameter of Eq. (5).  If so, the effect of a. change in length 

scale at fixed free stream conditions would be to merely 

change the actual time of occurrence of the aerpthermoelastic 

phenomena being investigated. 

Thä flutter test procedure would be to first estab- 

lish the cold flutter dynamic pressure of these wings by test- 

ing at room stagnation temperatures.  Then one could run at 
2 

some lower  P^V /2  but higher stagnation temperature and 

observe the time to flutter for each of these wings. 

The models could also be instrumented to measure 

temperature and root strains and correlation again attempted 
using the parameters -of Eqs. (4) and (5).  In addition to 

correlating similarity parameters, the above tests would pro- 

vide an experimental check of Budiansky and Mayers' theory of 

thermal stress effects (Ref. 4) on basic aeroelastic flutter. 

The effect of using different materials may be in- 

vestigated by using one of the 17-7 PH steel wings above as a 

8 
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prototype and an identical wing constructed of aluminum 2024 

as the model. .According to Eqs. (4) and (5) above, similarity 

may be achieved using a*lower stagnation temperature such that 
ao^To " TBi^  Was maintairied«  The corresponding dynamic pres- 
sure for the aluminum model would be about 1/3 as great as 
the steel prototype. 

» . 
The effect of using a different thickness*ratio T 

could be investigated.  This would then require testing at a 

different Mach number to maintain the same M x . and at 
oo 

a different stagnation temperature.  Again correlation with 

the basic 17-7 PH steel wing as a prototype could be attempted, 

in both flutter speeds, time to flutter, and temperature time 
histories. ■  • '   '  ■ 

- 

This proposed experimental program was discussed 

with the personnel of the Structures Research Division and 

Dynamic Loadö Division of the NASA at Langley Field, Virginia. 

As a result of discussions there, it.is recommended that tests 

be conducted also on flat plate delta and swept wing plänforms 

similar in nature to the tests described above for the rectan- 

gular wings.  Some of their current tests on such delta wings 

are along similar lines as described here and it is anticipated 

that when more data is available correlation will be attempted 
according to the parameters described here. 

b)   Flutter of Heated Built-Up Wings 

In this program, it is proposed to again place 

three different scale built-up wing sections in a large, high 

stagnation temperature M = 3 tunnel, and to correlate aero- 
elastic behavior. • • 

The suggested wings could be of typical X-15 type 

construction.  In this case, there is.not expected to be a 

marked decrease in GJ due to thermal effects.  Probably here 



only temperatures or static tip twists as influenced by 
temperature could be measured. 

Another program that might be of interest to under- 
take here would be to build three different scale models of 

the chordwise type flutter observed originally in Reference 5. 

The time to flutter for these different scale models might 

possibly be correlated according to the parameters of Eqs. 2 
and 3. 

c)   Flutter of Heated Panels 

In this program, it is proposed to place three 

similar panels of differing scale in a high stagnation temper- 

ature tunnel.  Again, the correlation of the flutter behavior 

and time to flutter of the different size panels could be 

attempted according to the parameters of Eq. 6.  Different 

materials as well as different thickness ratios and stagnation 

temperatures could be tried for correlation as previously 

suggested in the flutter of heated solid section wings. 

In this connection, the interesting phenomenon of 

heated panels first fluttering and then stopping after buckling 

is produced might possibly be examined.  As reported in Ref. 6 

the times to start and stop fluttering might possibly be corre- 

lated.  For the stopping behavior of this flutter, the large 

deflection parameters would no doubt have to be used. 

10 
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